Identification of an Immune-Related Prognostic Signature for Glioblastoma by Comprehensive Bioinformatics and Experimental Analyses

Author:

Ye ShengdaORCID,Yang Bin,Zhang Tingbao,Wei Wei,Li Zhiqiang,Chen Jincao,Li Xiang

Abstract

Background: Glioblastoma (GBM), which has a poor prognosis, accounts for 31% of all cancers in the brain and central nervous system. There is a paucity of research on prognostic indicators associated with the tumor immune microenvironment in GBM patients. Accurate tools for risk assessment of GBM patients are urgently needed. Methods: In this study, we used weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) methods to screen out GBM-related genes among immune-related genes (IRGs). Then, we used survival analysis and Cox regression analysis to identify prognostic genes among the GBM-related genes to further establish a risk signature, which was validated using methods including ROC analysis, stratification analysis, protein expression level validation (HPA), gene expression level validation based on public cohorts, and RT-qPCR. In order to provide clinicians with a useful tool to predict survival, a nomogram based on an assessment of IRGs and clinicopathological features was constructed and further validated using DCA, time-dependent ROC curve, etc. Results: Three immune-related genes were found: PPP4C (p < 0.001, HR = 0.514), C5AR1 (p < 0.001, HR = 1.215), and IL-10 (p < 0.001, HR = 1.047). An immune-related prognostic signature (IPS) was built to calculate risk scores for GBM patients; patients classified into different risk groups had significant differences in survival (p = 0.006). Then, we constructed a nomogram based on an assessment of the IRG-based signature, which was validated as a potential prediction tool for GBM survival rates, showing greater accuracy than the nomogram without the IPS when predicting 1-year (0.35 < Pt < 0.50), 3-year (0.65 < Pt < 0.80), and 5-year (0.65 < Pt < 0.80) survival. Conclusions: In conclusion, we integrated bioinformatics and experimental approaches to construct an IPS and a nomogram based on IPS for predicting GBM prognosis. The signature showed strong potential for prognostic prediction and could help in developing more precise diagnostic approaches and treatments for GBM.

Funder

the National Natural Science Foundation of China (NSFC

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3