Integrated Analysis of LncRNA-Mediated ceRNA Network in Calcific Aortic Valve Disease

Author:

Chen Long,Wei Ke,Li Jun,Li Yue,Cao Huiqing,Zheng Zhe

Abstract

Background: The high morbidity and mortality of calcific aortic valve disease (CAVD) represents an unmet clinical need to investigate the molecular mechanisms involved. Evidence suggests that long non-coding RNAs (lncRNAs) can act as competitive endogenous RNAs (ceRNAs) by binding to microRNAs and regulating target genes in cardiovascular diseases. Nevertheless, the role of lncRNAs related ceRNA regulation in CAVD remains unclear. Methods: RNAseq data of human diseased aortic valves were downloaded from GEO data sets (GSE153555, GSE199718), and differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between CAVD and non-calcific aortic valve tissues with limma R package. Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Set Enrichment analysis (GSEA) were performed with clusterProfiler and gesaplot2 R package. The pivotal microRNAs were predicted by three databases intersection including TargetScan, MiRwalk, miRDB according to the genes related to the crucial pathways. ENCORI was used to predict targeted lncRNAs of hub microRNAs. We constructed lncRNA-miRNA-mRNA ceRNA network with Cytoscape software. The lncRNAs in ceRNA network were verified by RT-qPCR in human 30 calcific and 20 noncalcified aortic valve tissues. Results: In total, 1739 DEmRNAs and 266 DElncRNAs were identified in CAVD. GO, KEGG pathway, GSEA annotations suggested that most of these genes are enriched in extracellular matrix (ECM)-reporter interaction pathways. The ceRNA networks associated with ECM-reporter interaction are constructed and related lncRNAs including H19, SNHG3 and ZNF436-AS1 were significant upregulated in human calcific aortic valve tissues, which might be potential therapeutic targets for CAVD. Conclusions: In this study, we proposed a novel lncRNA-miRNA-mRNA ceRNA network related to ECM-reporter interaction pathways, which potentially regulates CAVD progression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3