Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage

Author:

Xin Yuanjun,Chen Jie,Zhang Hongxia,Ostrowski Robert P.,Liang Yidan,Zhao Jun,Xiang Xiang,Liang Fuming,Fu Wenqiao,Huang Hao,Wu Xintong,Su Jun,Deng Jiewen,He Zhaohui

Abstract

White matter damage (WMD), one of the research hotspots of subarachnoid hemorrhage (SAH), mainly manifests itself as myelin injury and oligodendrocyte differentiation disorder after SAH, although the specific mechanism remains unclear. Dexamethasone-induced Ras-related protein 1(Dexras1) has been reported to be involved in nervous system damage in autoimmune encephalitis and multiple sclerosis. However, whether Dexras1 participates in dysdifferentiation of oligodendrocytes and myelin injury after SAH has yet to be examined, which is the reason for creating the research content of this article. Here, intracerebroventricular lentiviral administration was used to modulate Dexras1 levels in order to determine its functional influence on neurological injury after SAH. Immunofluorescence, transmission electron microscopy, and Western blotting methods, were used to investigate the effects of Dexras1 on demyelination, glial cell activation, and differentiation of oligodendrocyte progenitor cells (OPCs) after SAH. Primary rat brain neurons were treated with oxyhemoglobin to verify the association between Dexras1 and cAMP-CREB. The results showed that Dexras1 levels were significantly increased upon in vivo SAH model, accompanied by OPC differentiation disturbances and myelin injury. Dexras1 overexpression significantly worsened OPC dysdifferentiation and myelin injury after SAH. In contrast, Dexras1 knockdown ameliorated myelin injury, OPC dysdifferentiation, and glial cell activation. Further research of the underlying mechanism discovered that the cAMP-CREB pathway was inhibited after Dexras1 overexpression in the in vitro model of SAH. This study is the first to confirm that Dexras1 induced oligodendrocyte dysdifferentiation and myelin injury after SAH by inhibiting the cAMP-CREB pathway. This present research may reveal novel therapeutic targets for the amelioration of brain injury and neurological dysfunction after SAH.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing Science and Technology Commission

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3