Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations

Author:

Liu Yuan,He Ruirui,Qu Yingjie,Zhu Yuan,Li Dianke,Ling Xinping,Xia Simin,Li Zhenqiu,Li Dong

Abstract

Understanding gene functions and their associated abnormal phenotypes is crucial in the prevention, diagnosis and treatment against diseases. The Human Phenotype Ontology (HPO) is a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. However, the current HPO annotations are far from completion, and only a small fraction of human protein-coding genes has HPO annotations. Thus, it is necessary to predict protein-phenotype associations using computational methods. Protein sequences can indicate the structure and function of the proteins, and interacting proteins are more likely to have same function. It is promising to integrate these features for predicting HPO annotations of human protein. We developed GraphPheno, a semi-supervised method based on graph autoencoders, which does not require feature engineering to capture deep features from protein sequences, while also taking into account the topological properties in the protein–protein interaction network to predict the relationships between human genes/proteins and abnormal phenotypes. Cross validation and independent dataset tests show that GraphPheno has satisfactory prediction performance. The algorithm is further confirmed on automatic HPO annotation for no-knowledge proteins under the benchmark of the second Critical Assessment of Functional Annotation, 2013–2014 (CAFA2), where GraphPheno surpasses most existing methods. Further bioinformatics analysis shows that predicted certain phenotype-associated genes using GraphPheno share similar biological properties with known ones. In a case study on the phenotype of abnormality of mitochondrial respiratory chain, top prioritized genes are validated by recent papers. We believe that GraphPheno will help to reveal more associations between genes and phenotypes, and contribute to the discovery of drug targets.

Funder

National key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3