PARP1 Might Substitute HSF1 to Reactivate Latent HIV-1 by Binding to Heat Shock Element

Author:

Xu Xinfeng,Lin Yingtong,Zeng Xiaoyun,Yang Chan,Duan Siqin,Ding Liqiong,Lu Wanzhen,Lin Jian,Pan XiaoyanORCID,Ma XiancaiORCID,Liu ShuwenORCID

Abstract

At present, the barrier to HIV-1 functional cure is the persistence of HIV-1 reservoirs. The “shock (reversing latency) and kill (antiretroviral therapy)” strategy sheds light on reducing or eliminating the latent reservoir of HIV-1. However, the current limits of latency-reversing agents (LRAs) are their toxicity or side effects, which limit their practicability pharmacologically and immunologically. Our previous research found that HSF1 is a key transcriptional regulatory factor in the reversion of HIV-1 latency. We then constructed the in vitro HSF1-knockout (HSF1-KO) HIV-1 latency models and found that HSF1 depletion inhibited the reactivation ability of LRAs including salubrinal, carfizomib, bortezomib, PR-957 and resveratrol, respectively. Furthermore, bortezomib/carfizomib treatment induced the increase of heat shock elements (HSEs) activity after HSF1-KO, suggesting that HSEs participated in reversing the latent HIV-1. Subsequent investigation showed that latent HIV-1-reversal by H2O2-induced DNA damage was inhibited by PARP1 inhibitors, while PARP1 was unable to down-regulate HSF1-depleted HSE activity, indicating that PARP1 could serve as a replaceable protein for HSF1 in HIV-1 latent cells. In summary, we succeeded in finding the mechanisms by which HSF1 reactivates the latent HIV-1, which also provides a theoretical basis for the further development of LRAs that specifically target HSF1.

Funder

Natural Science of China

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3