Ex Vivo Perfusion Using a Mathematical Modeled, Controlled Gas Exchange Self-Contained Bioreactor Can Maintain a Mouse Kidney for Seven Days

Author:

Won Natalie,Castillo-Prado Jorge,Tan Xinzhu,Ford John,Heath David,Mazilescu Laura Ioana,Selzner Markus,Rogers Ian M.ORCID

Abstract

Regenerative medicine requires better pre-clinical tools in order to increase the efficiency of novel therapies transitioning to the clinic. Current monolayer cell culture methods are suboptimal for effectively testing new therapies and live mouse models are expensive, time consuming and require invasive procedures. Fetal organ culture, organoids, microfluidics and culture of thick sections of adult organs all aim to fill the knowledge gap between monolayer culture and live mouse studies. Here we report on an ex vivo organ perfusion system that can support whole adult mouse organs. Ex vivo perfusion of healthy and diseased mouse organs allows for real-time analysis that provides immediate feedback and accurate data collection throughout the experiment. Having a suitable normothermic ex vivo perfusion system for mouse organs provides a tool that will help contribute to our understanding of kidney physiology and disease and can take advantage of the many mouse models of human disease that already exist. Furthermore, an ex vivo kidney perfusion system can be used for testing novel cell therapies, drug screening, drug validation and for the detection of nephrotoxic substances. Critical to the success of mouse ex vivo organ perfusion is having a suitable bioreactor to maintain the organ. Here we have focused on the mouse kidney and mathematically modeled, built and validated a bioreactor that can maintain a kidney for 7 days. The long duration of the ex vivo perfusion will help to advance studies on kidney disease and can rapidly test for new regenerative medicine therapies compared to whole animal studies.

Funder

Canadian Donor Transplant Research Program (CDTRP)- Research Innovation Grant

Ontario Research Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3