Abstract
This work describes a new method for determining K+ concentration, [K+], in blood plasma using a smartphone with a custom-built optical attachment. The method is based on turbidity measurement of blood plasma solutions in the presence of sodium tetraphenylborate, a known potassium precipitating reagent. The images obtained by a smartphone camera are analyzed by a custom image-processing algorithm which enables the transformation of the image data from RGB to HSV color space and calculation of a mean value of the light-intensity component (V). Analysis of images of blood plasma containing different amounts of K+ reveal a correlation between V and [K+]. The accuracy of the method was confirmed by comparing the results with the results obtained using commercial ion-selective electrode device (ISE) and atomic absorption spectroscopy (AAS). The accuracy of the method was within ± 0.18 mM and precision ± 0.27 mM in the [K+] range of 1.5–7.5 mM when using treated blood plasma calibration. Spike tests on a fresh blood plasma show good correlation of the data obtained by the smartphone method with ISE and AAS. The advantage of the method is low cost and integration with a smartphone which offers possibility to measure [K+] on demand and in remote areas where access to hospitals is limited.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. New trends in the treatment of hypokalemia in cows;Latest Scientific Findings in Ruminant Nutrition - Research for Practical Implementation [Working Title];2024-06-10
2. Engineering Strategies for Advancing Optical Signal Outputs in Smartphone‐Enabled Point‐of‐Care Diagnostics;Advanced Intelligent Systems;2023-02-21