Global Context Relation-Guided Feature Aggregation Network for Salient Object Detection in Optical Remote Sensing Images

Author:

Li Jian1,Li Chuankun1,Zheng Xiao2,Liu Xinwang2,Tang Chang3

Affiliation:

1. National Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051, China

2. School of Computer, National University of Defense Technology, Changsha 410073, China

3. School of Computer Science, China University of Geosciences, Wuhan 430074, China

Abstract

With the rapid development of deep neural networks, salient object detection has achieved great success in natural images. However, detecting salient objects from optical remote sensing images still remains a challenging task due to the diversity of object types, scale, shape and orientation variations, as well as cluttered backgrounds. Therefore, it is impractical to directly leverage methods designed for natural images to detect salient objects in optical remote sensing images. In this work, we present an end-to-end deep neural network for salient object detection in optical remote sensing images via global context relation-guided feature aggregation. Since the objects in remote sensing images often have a scattered distribution, we design a global context relation module to capture the global relationships between different spatial positions. In order to effectively integrate low-level appearance features as well as high-level semantic features for enhancing the final performance, we develop a feature aggregation module with the global context relation information as guidance and embed it into the backbone network to refine the deep features in a progressive manner. Instead of using traditional binary cross entropy as a training loss which treats all pixels equally, we design a weighted binary cross entropy to capture local surrounding information of different pixels. Extensive experiments on three public datasets are conducted to validate the efficiency of the proposed network and the results demonstrate that our proposed method consistently outperforms other competitors.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Shanxi Scholarship Council of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3