VCC-DiffNet: Visual Conditional Control Diffusion Network for Remote Sensing Image Captioning

Author:

Cheng Qimin1ORCID,Xu Yuqi1,Huang Ziyang1

Affiliation:

1. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Pioneering remote sensing image captioning (RSIC) works use autoregressive decoding for fluent and coherent sentences but suffer from high latency and high computation costs. In contrast, non-autoregressive approaches improve inference speed by predicting multiple tokens simultaneously, though at the cost of performance due to a lack of sequential dependencies. Recently, diffusion model-based non-autoregressive decoding has shown promise in natural image captioning with iterative refinement, but its effectiveness is limited by the intrinsic characteristics of remote sensing images, which complicate robust input construction and affect the description accuracy. To overcome these challenges, we propose an innovative diffusion model for RSIC, named the Visual Conditional Control Diffusion Network (VCC-DiffNet). Specifically, we propose a Refined Multi-scale Feature Extraction (RMFE) module to extract the discernible visual context features of RSIs as input of the diffusion model-based non-autoregressive decoder to conditionally control a multi-step denoising process. Furthermore, we propose an Interactive Enhanced Decoder (IE-Decoder) utilizing dual image–description interactions to generate descriptions finely aligned with the image content. Experiments conducted on four representative RSIC datasets demonstrate that our non-autoregressive VCC-DiffNet performs comparably to, or even better than, popular autoregressive baselines in classic metrics, achieving around an 8.22× speedup in Sydney-Captions, an 11.61× speedup in UCM-Captions, a 15.20× speedup in RSICD, and an 8.13× speedup in NWPU-Captions.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference46 articles.

1. A Systematic Survey of Remote Sensing Image Captioning;Zhao;IEEE Access,2021

2. Chen, T., Zhang, R., and Hinton, G.E. (2022). Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning. arXiv.

3. Fei, Z. (2019). Fast Image Caption Generation with Position Alignment. arXiv.

4. Li, Y., Zhou, K., Zhao, W.X., and Wen, J.-R. (2023). Diffusion Models for Non-autoregressive Text Generation: A Survey. arXiv.

5. Zhu, Z., Wei, Y., Wang, J., Gan, Z., Zhang, Z., Wang, L., Hua, G., Wang, L., Liu, Z., and Hu, H. (2022). Exploring Discrete Diffusion Models for Image Captioning. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3