Modelling Water Depth, Turbidity and Chlorophyll Using Airborne Hyperspectral Remote Sensing in a Restored Pond Complex of Doñana National Park (Spain)

Author:

Coccia Cristina123ORCID,Pintado Eva4,Paredes Álvaro L.5ORCID,Aragonés David4ORCID,O’Ryan Daniela C.6ORCID,Green Andy J.7ORCID,Bustamante Javier4ORCID,Díaz-Delgado Ricardo4ORCID

Affiliation:

1. Department of Sciences, University of Rome Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy

2. National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy

3. Bahia Lomas Research Centre, Universidad Santo Tomás, Av. Ejército Libertador 146, Santiago 8370003, Chile

4. Laboratory of Remote Sensing & GIS, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Cientifícas (CSIC), c/Américo Vespucio 26, 41092 Sevilla, Spain

5. Data Observatory Foundation, Eliodoro Yáñez 2990, Santiago 7510277, Chile

6. Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica del Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile

7. Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Cientifícas (CSIC), C/Américo Vespucio 26, 41092 Sevilla, Spain

Abstract

Restored wetlands should be closely monitored to fully evaluate the effectiveness of restoration efforts. However, regular post-restoration monitoring can be time-consuming and expensive, and is often absent or inadequate. Satellite and airborne remote sensing systems have proven to be cost-effective tools in many fields, but they have not been widely used to monitor ecological restoration. This study assessed the potential of airborne hyperspectral remote sensing to monitor water mass characteristics of experimental temporary ponds in the Mediterranean region. These ponds were created during marsh restoration in Doñana National Park (south-west Spain). We used hyperspectral images acquired by the CASI-1500 hyperspectral airborne sensor to estimate and map water depth, turbidity and chlorophyll a in a subset of the 96 new ponds. The high spatial and spectral resolution of the CASI sensor allowed us to detect differences between ponds in water depth, turbidity and chlorophyll a, providing accurate mapping of these three variables, and a useful method to assess restoration success. High levels of spatial variation were recorded between different ponds, which likely generates high diversity in the animal and plant species that they contain. These results highlight the great potential of hyperspectral sensors for the long-term monitoring of wetland complexes in the Mediterranean region and elsewhere.

Funder

Spanish Ministry of Science and Innovation

Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía

European Regional Development Fund

eLTER Plus project

Spanish Ministry of Science, Innovation and Universities

Junta de Andalucía

Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, “Dalla ricerca all’impresa”, Investimento 1.4

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3