Leveraging Visual Language Model and Generative Diffusion Model for Zero-Shot SAR Target Recognition

Author:

Wang Junyu1ORCID,Sun Hao1,Tang Tao1,Sun Yuli1ORCID,He Qishan1,Lei Lin1,Ji Kefeng1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Simulated data play an important role in SAR target recognition, particularly under zero-shot learning (ZSL) conditions caused by the lack of training samples. The traditional SAR simulation method is based on manually constructing target 3D models for electromagnetic simulation, which is costly and limited by the target’s prior knowledge base. Also, the unavoidable discrepancy between simulated SAR and measured SAR makes the traditional simulation method more limited for target recognition. This paper proposes an innovative SAR simulation method based on a visual language model and generative diffusion model by extracting target semantic information from optical remote sensing images and transforming it into a 3D model for SAR simulation to address the challenge of SAR target recognition under ZSL conditions. Additionally, to reduce the domain shift between the simulated domain and the measured domain, we propose a domain adaptation method based on dynamic weight domain loss and classification loss. The effectiveness of semantic information-based 3D models has been validated on the MSTAR dataset and the feasibility of the proposed framework has been validated on the self-built civilian vehicle dataset. The experimental results demonstrate that the first proposed SAR simulation method based on a visual language model and generative diffusion model can effectively improve target recognition performance under ZSL conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province of China

Postdoctoral Fellowship Program of CPSF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3