A Small Maritime Target Detection Method Using Nonlinear Dimensionality Reduction and Feature Sample Distance

Author:

Guan Jian1,Jiang Xingyu1,Liu Ningbo1,Ding Hao1,Dong Yunlong1,Guo Zhongping2

Affiliation:

1. Institute of Information Fusion, Naval Aviation University, Yantai 264001, China

2. Air Traffic Control Teaching and Research Section, Naval Aviation University, Yantai 264001, China

Abstract

Addressing the challenge of radar detection of small targets under sea clutter, target detection methods based on a three-dimensional feature space have shown effectiveness. However, their application has revealed several problems, including high dependency on linear relationships between features for dimensionality reduction, unclear reduction objectives, and spatial divergence of target samples, which limit detection performance. To mitigate these challenges, we constructed a feature density distance metric employing copula functions to quantitatively describe the classification capability of multidimensional features to distinguish targets from sea clutter. On the basis of this, a lightweight nonlinear dimensionality reduction network utilizing a self-attention mechanism was developed, optimally re-expressing multidimensional features into a three-dimensional feature space. Additionally, a concave hull classifier using feature sample distance was proposed to mitigate the negative impact of target sample divergence in the feature space. Furthermore, multivariate autoregressive prediction was used to optimize features, reducing erroneous decisions caused by anomalous feature samples. Experimental results using the measured data from the SDRDSP public dataset demonstrated that the proposed detection method achieved a detection probability more than 4% higher than comparative methods under Sea State 5, was less affected by false alarm rates, and exhibited superior detection performance under different false alarm probabilities from 10−3 to 10−1.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3