A Method for Extracting Acoustic Water Surface Waves Based on Phase Compensation

Author:

Li Miaomiao12ORCID,Liang Xingdong12,Zhang Yuan12ORCID,Xin Jihao12,Jiang Nanyi12,Guo Qichang12,Wang Mingming12,Wei Jiashuo1,Bu Xiangxi12

Affiliation:

1. National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the increasing demand for marine biosensing and water–air collaborative rescue in national production and life, establishing a robust cross-medium communication link has become one of the hotspots. Among them, microwave acoustic cross-medium uplink communication technology has been widely studied for its advantages of being able to be used all day and in all weather, there being no need for relay, and having high concealment. The principle is to extract the frequency of the acoustic water surface waves from the phase history of the radar echoes. However, wave interference can cause discontinuity of the phase history, resulting in difficulty in extracting the acoustic water surface waves and an increase in bit error rate (BER). This article analyses the reasons for the discontinuity of phase history and innovatively proposes a method for extracting acoustic water surface waves based on phase compensation. The discontinuity points of the phase history are compensated based on whether the range bin changes. Then, low-frequency water surface fluctuations and discontinuity points are filtered out through second-order differential joint outlier removal, which can effectively reduce the influence of phase history discontinuity on time–frequency analysis and communication decoding. The effectiveness of the proposed method was verified through simulations and experiments. The experimental results indicate that the BER of the proposed method is 25% of that of the Wavelet–Kalman Filtering method. The proposed method provides a new approach for microwave acoustic cross-medium uplink communication.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3