Validation of Multi-Temporal Land-Cover Products Considering Classification Error Propagation

Author:

Liao Shicheng12ORCID,Xie Huan123,Gong Yali12,Jin Yanmin12,Xu Xiong12,Chen Peng12ORCID,Tong Xiaohua12

Affiliation:

1. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

2. Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, China

3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China

Abstract

Reducing the lag in the accuracy assessment of multi-temporal land-cover products has been a hot research topic. By identifying the changed strata, the annual accuracy in multi-temporal products can be quickly evaluated. However, there are still two limitations in the accuracy assessment of multi-temporal products. Firstly, the setting of the parameters (e.g., the total sample size, allocation of samples in the changed strata, etc.) in the fundamental sampling design is not based on specific setting criteria. Therefore, this evaluation method is not always applicable when the product or research area changes. Secondly, the accuracy evaluation of multi-temporal products does not consider the influence of misclassification. This can lead to an overestimation of the accuracy of changed strata in single-year evaluations. In this paper, we describe how the total sample and the assignment of samples in every stratum can be adjusted according to the characteristics of the land-cover product, which improves the applicability of the evaluation. The samples in the changed strata that propagate misclassification are essentially pixels that have not undergone any land-cover change. Therefore, in order to eliminate the propagation of this inter-annual classification error, the misclassified samples are reclassified as unchanged strata. This method was used in the multi-temporal ESA CCI land-cover product. The experimental results indicate that the single-year accuracy, considering classification error, is closer to the traditional evaluation accuracy of single-temporal data. For the categories with a small ratio of unchanged strata samples to changed strata samples, the accuracy improvement, after eliminating the classification errors, is more obvious. For the urban class, in particular, the misclassification affects its estimated accuracy by 9.72%.

Funder

National Natural Science Foundation of China

Shanghai Academic Research Leader Program

Shanghai Science and Technology Innovation Action Plan Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3