Generation and Analysis of Gridded Visibility Data in the Arctic

Author:

Shan Yulong,Zhang RenORCID,Li Ming,Wang Yangjun,Li Qiuhan,Li Lifeng

Abstract

With the accelerated warming of the arctic and the gradual opening of the Arctic passages, more and more attention has been paid to assessing the risk of the navigation environment in the Arctic. Due to the scarcity of visibility data in the Arctic, this study proposes a model for referring visibility based on a back propagation (BP) neural network. The reliability of the model is validated and the gridded atmospheric visibility data in the Arctic from 2009 to 2018 was obtained. At the same time, this study analyzed the spatial and temporal features of visibility in the Arctic. The results show that the mean relative error is less than 20% under the different sample forms and it is more accurate to infer the visibility in a specific month using the multiple-year data of that month as training samples. Furthermore, the amount of sample data has a positive effect on the accuracy of inferred visibility, but the effect decreases with data quantity increasing. Visibility changes quickly in the south of 80° N in August, but slowly in the north in that time. At the same time, visibility in July and August is lower than that in other months but higher in March and May.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3