Evaluating the Accuracy of a Gridded Near-Surface Temperature Dataset over Mainland China

Author:

Qiu Meijuan,Liu Buchun,Liu Yuan,Zhang Yueying,Han Shuai

Abstract

High-resolution meteorological data products are crucial for agrometeorological studies. Here, we study the accuracy of an important gridded dataset, the near-surface temperature dataset from the 5 km × 5 km resolution China dataset of meteorological forcing for land surface modeling (published by the Beijing Normal University). Using both the gridded dataset and the observed temperature data from 590 meteorological stations, we calculate nine universal meteorological indices (mean, maximum, and minimum temperatures of daily, monthly, and annual data) and five agricultural thermal indices (first frost day, last frost day, frost-free period, and ≥0 °C and ≥10 °C active accumulated temperature, i.e., AAT0 and AAT10) of the 11 temperature zones over mainland China. Then, for each meteorological index, we calculate the root mean square errors (RMSEs), correlation coefficient and climate trend rates of the two datasets. The results show that the RMSEs of these indices are usually lower in the north subtropical, mid-subtropical, south subtropical, marginal tropical and mid-tropical zones than in the plateau subfrigid, plateau temperate, and plateau subtropical mountains zones. Over mainland China, the AAT0, AAT10, and mean and maximum temperatures calculated from the gridded data show the same climate trends with those derived from the observed data, while the minimum temperature and its derivations (first frost day, last frost day, and frost-free period) show the opposite trends in many areas. Thus, the mean and maximum temperature data derived from the gridded dataset are applicable for studies in most parts of China, but caution should be taken when using the minimum temperature data.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference35 articles.

1. Variation characteristics of agricultural heat resource and its effect on agriculture in Shanxi Province, China;Qian;Chin. J. Appl. Ecol.,2015

2. Climate Resilient Agriculture for Ensuring Food Security;Reddy,2015

3. Spatio-temporal variation of agricultural thermal resources at different critical temperatures in China’s temperate zone;Zhang;Res. Sci.,2017

4. Spatiotemporal Variation of Heat and Solar Resources and Its Impact on Summer Maize in the North China Plain over the Period 1961–2015;Yang;Chin. J. Agrometeorol.,2018

5. Past and future changes in climate and hydrological indicators in the US Northeast

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3