Abstract
The effect of the design and process parameters of a particle-classification zone on the sizing precision of a plate differential mobility analyzer (PDMA) was investigated by simulation software in this work. The design parameters consisted of the length, width, and height of the classification zone, and the process parameters could lead to height deviation and an uneven classification-zone wall. Prior to investigating the parameters, a comparison between experimental voltages and PDMA simulation results was applied to validate the simulation model. Thanks to velocity-field and particle-trajectory simulations, as well as experimental data from the former version of the PDMA, the dimensions of the classification zone and other key parameters were optimized. Our research shows that the dimensions of the classification zone influence the applied voltages and the measuring range of the PDMA, and range can be extended to 500 nm with low applied voltages after optimization. When the reasonable error range of the height is ±2% for the classification zone, the PDMA could basically achieve a classification role, and when it is ±1%, the PDMA has a better classifying effect.
Funder
National Key Research and Development Program of China
Natural Science Foundation of China
Science and Technological Fund of Anhui Province for Outstanding Youth
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献