Impact of Control Measures on Nitrogen Oxides, Sulfur Dioxide and Particulate Matter Emissions from Coal-Fired Power Plants in Anhui Province, China

Author:

Dai Haitao,Ma Dawei,Zhu Renbin,Sun Bowen,He Jun

Abstract

Anhui is one of the highest provincial emitters of air pollutants in China due to its large coal consumption in coal-fired plants. In this study, the total emissions of nitrogen oxides (NOx), sulfur dioxide (SO2) and particulate matter (PM) from coal-fired power plants in Anhui were investigated to assess the impact of control measures on the atmospheric emissions based upon continuous emission monitoring systems (CEMS). The total NOx, SO2 and PM emissions significantly decreased from 2013 to 2017 and they were estimated at 24.5 kt, 14.8 kt and 3.0 kt in 2017, respectively. The emission reductions of approximately 79.0%, 70.1% and 81.2% were achieved in 2017 compared with a 2013 baseline, respectively, due to the application of high-efficiency emission control measures, including the desulfurization, denitration and dust-removing devices and selective catalytic reduction (SCR). The NOx, SO2 and PM emission intensities were 0.125 g kWh−1, 0.076 g kWh−1 and 0.015 g kWh−1 in 2017, respectively, which were lower than the average of national coal-fired units. The coal-fired units with ≥600 MW generated 80.6% of the total electricity amount while they were estimated to account for 70.5% of total NOx, 70.1% of total SO2 and 71.9% of total PM. Their seasonal emissions showed a significant correlation to the power generation with the maximum correlation found in summer (July and August) and winter (January and December). The major regional contributors are the cities along the Huai River Basin and Yangtze River Basin, such as Huainan, Huaibei, Tongling, Maanshan and Wuhu, and the highest emission occurred in Huainan, accounting for approximately 26–40% of total emission from all the power plants. Our results indicated that the application of desulfurization, denitration and dust-removing devices has played an important role in controlling air pollutant emissions from coal-fired power plants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3