Influence of Atmosphere Near-Surface Layer Properties on Development of Cloud Convection

Author:

Abshaev Magomet,Zakinyan Robert,Abshaev Ali,Al-Owaidi Qasim,Kulgina Ludmila,Zakinyan Arthur,Wehbe Youssef,Yousef LatifaORCID,Farrah Sufian,Al Mandous Abdulla

Abstract

A two-dimensional mathematical model of moist air convection in the sub-cloud and cloud layers is proposed. A theoretical analysis of the influence of near ground atmospheric parameters on the development of sub-cloud and cloud convection is provided, and the criteria of convection development are considered. As a rule, this relationship is parameterized in general circulation, regional or mesoscale models of the atmosphere. Therefore, achieving a more complete and correct understanding of this relationship can lead to an improvement in the accuracy of weather forecasts. The mathematical model describes the system of the equations of motion, heat conductivity and the continuity equations for a two-dimensional vertical plane. The approximate analytical solution of the system of equations is obtained. Expressions for the estimation of the convection height and height of maximum velocity are derived for vertical and horizontal components of updraft wind and for vertical distribution of temperature. From the expressions obtained, the criterion of sub-cloud convection development is derived. The expressions for the convection parameters at a condensation level have also been formulated, from which the criterion of cloud development through convection is derived. It is established that the development of cloud convection depends on absolute values of the dew point deficit in a near-surface layer and, in a greater degree, on vertical gradients of water vapor mass fraction. It is shown that at certain critical values of a vertical gradient of water vapor mass fraction “explosive convective growth” is observed. The application of the obtained results to artificial stimulation of convection by means of air heating in the near-ground atmosphere has shown that the success of such an application and the required air heating-up depend on: (i) the vertical temperature gradient; (ii) the vertical dew-point gradient; and (iii) the value of the dew point deficit in the near-ground layer. The analysis performed has shown the possibility of successful stimulation of artificial convection under specific favorable atmospheric conditions.

Funder

United Arab Emirates Program for Rain Enhancement Science

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference47 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Russian Studies on Clouds and Precipitation in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

2. Russian Studies on Clouds and Precipitation in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

3. Study of the Possibility of Stimulating Cloud Convection by Solar Radiation Energy Absorbed in an Artificial Aerosol Layer;Atmosphere;2022-12-31

4. On the energy–consistent plume model in the convective boundary layer;Dynamics of Atmospheres and Oceans;2022-12

5. Atmospheric conditions favorable for the creation of artificial clouds by a jet saturated with hygroscopic aerosol;Atmospheric Research;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3