Impacts of In-Cabin Exposure to Size-Fractionated Particulate Matters and Carbon Monoxide on Changes in Heart Rate Variability for Healthy Public Transit Commuters

Author:

Tang Chin-Sheng,Wu Tzu-Yi,Chuang Kai-Jen,Chang Ta-YuanORCID,Chuang Hsiao-Chi,Lung Shih-Chun Candice,Chang Li-Te

Abstract

To evaluate the cardiovascular impact of traffic-related pollutant exposure on healthy young adults, the research team has collected the primary data of in-cabin exposure to air pollutants and heart rate variability (HRV). Twenty young healthy college students were recruited in Taipei metropolitan area. In addition to electrocardiogram, personal exposure to air pollutants, i.e., particulate matter (PM) and carbon monoxide (CO), and weather conditions, including temperature and relative humidity (RH), on campus, bus, and mass rapid transit were monitored continuously. The following HRV parameters were evaluated using generalized additive mixed model to adjust for personal and meteorological variables: heart rate (HR), the square root of the mean of the sum of the squares of differences between adjacent normal-to-normal (NN) intervals (r-MSSD), the standard deviation of all NN intervals (SDNN), the percentage of successive NN interval differences greater than 50 ms (pNN50), low-frequency power (LF), high-frequency power (HF), total power (TP), and LF/HF. They were assessed to find out the association between in-cabin exposure and HRV parameters. Compared with the HRV parameters measured on campus, the percent changes in r-MSSD, SDNN, pNN50+1, LF, HF, and TP decreased when the participants were in public transits. After adjusting for all locations, 5 min moving averages of PM2.5–10 and PM1 were significantly associated with the increase in the percent changes in HR and SDNN. Additionally, 5 min moving averages of PM2.5–10 exposure were significantly associated with the decrease in the percent change in HF, while it was significantly associated with the increase of the percent change in LF/HF. The reduction of the percent change in HR was also found to be significantly associated with 5 min CO moving averages. To conclude, current analyses have shown that size-fractionated PMs and CO exposure in public transits might lead to significant changes of HRV parameters for healthy young adults.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3