Biogeochemical Equation of State for the Sea-Air Interface

Author:

Elliott ScottORCID,Menzo Zachary,Jayasinghe Amadini,Allen Heather C.,Ogunro OluwaseunORCID,Gibson Georgina,Hoffman ForrestORCID,Wingenter Oliver

Abstract

We have recently argued that marine interfacial surface tension must have a distinctive biogeography because it is mediated by fresh surfactant macromolecules released locally through the food web. Here we begin the process of quantification for associated climate flux implications. A low dimensionality (planar) equation of state is invoked at the global scale as our main analysis tool. For the reader’s convenience, fundamental surfactant physical chemistry principles are reviewed first, as they pertain to tangential forces that may alter oceanic eddy, ripple, and bubble fields. A model Prandtl (neutral) wind stress regime is defined for demonstration purposes. It is given the usual dependence on roughness, but then in turn on the tension reduction quantity known as surface pressure. This captures the main net influences of biology and detrital organics on global microlayer physics. Based on well-established surrogate species, tangent pressures are related to distributed ecodynamics as reflected by the current marine systems science knowledge base. Reductions to momentum and related heat-vapor exchange plus gas and salt transfer are estimated and placed on a coarse biogeographic grid. High primary production situations appear to strongly control all types of transfer, whether seasonally or regionally. Classic chemical oceanographic data on boundary state composition and behaviors are well reproduced, and there is a high degree of consistency with conventional micrometeorological wisdom. But although our initial best guesses are quite revealing, coordinated laboratory and field experiments will be required to confirm the broad hypotheses even partially. We note that if the concepts have large scale validity, they are super-Gaian. Biological control over key planetary climate-transfer modes may be accomplished through just a single rapidly renewed organic monolayer.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference21 articles.

1. Statistical Physics;Reichl,1998

2. Physics of Climate;Piexoto,1992

3. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

4. Interfacial Phenomena;Davies,1963

5. The role of organic films in air-sea gas exchange;Frew,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3