New Algorithm for Rain Cell Identification and Tracking in Rainfall Event Analysis

Author:

He TingORCID,Einfalt Thomas,Zhang Jianxin,Hua Jiyao,Cai Yang

Abstract

This study proposes a new algorithm termed rain cell identification and tracking (RCIT) to identify and track rain cells from high resolution weather radar data. Previous algorithms have limitations when tracking non-consequent rain cells owing to their use of maximum correlation coefficient methods and their lack of an alternative way to handle the variation stages of rain cells during their life cycles. To address these deficiencies, various methods are implemented in the new algorithm. These include the particle image velocimetry (PIV) method for motion estimation and the rain cell matching rule to obtain the stage changes of rain cells. High resolution (5 min and 1 km) radar data from three rainy days over the German federal state North Rhine Westphalia (NRW) are used in this study. The performance of the identification module for the new algorithm is accessed by two object-oriented verification methods: structure–amplitude–location (SAL) and geometric index, while the performance of the tracking module is compared with TREC and SCOUT tracking algorithms and evaluated by the contingency table verification approach. Results suggest that the performance of the new algorithm is better than reference tracking method. Application of the RCIT algorithm to the selected cases shows that the inner structure of rainfall events in the experimental region present extreme value distributions, with most rainfall events having a short duration with less intensity. The new algorithm can effectively capture the stage changes of rain cells during their life cycles. The proposed algorithm can serve as the basis for further hydro-meteorological applications such as spatial and temporal analysis of rainfall events and short-term flood forecasting.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3