Parallelization Performances of PMSS Flow and Dispersion Modeling System over a Huge Urban Area

Author:

Oldrini Oliver,Armand Patrick,Duchenne Christophe,Perdriel Sylvie

Abstract

The use of modeling as a support tool for crisis management and decision planning requires fast simulations in complex built-up areas. The Parallel Micro SWIFT SPRAY (PMSS) modeling system offers a tradeoff between accuracy and fast calculations, while retaining the capability to model buildings at high resolution in three dimensions. PMSS has been applied to actual areas of responsibilities of emergency teams during the EMERGENCIES (very high rEsolution eMERGEncy simulatioN for citIES) and EMED (Emergencies for the MEDiterranean sea) projects: these areas cover several thousands of square kilometers. Usage of metric meshes on such large areas requires domain decomposition parallel algorithms within PMSS. Sensitivity and performance of the domain decomposition has been evaluated both for the flow and dispersion models, using from 341 up to 8052 computing cores. Efficiency of the Parallel SWIFT (PSWIFT) flow model on the EMED domain remains above 50% for up to 4700 cores. Influence of domain decomposition on the Parallel SPRAY (PSPRAY) Lagrangian dispersion model is less straightforward to evaluate due to the complex load balancing process. Due to load balancing, better performance is achieved with the finest domain decomposition. PMSS is able to simulate accidental or malevolent airborne release at high resolution on very large areas, consistent with emergency team responsibility constrains, and with computation time compatible with operational use. This demonstrates that PMSS is an important asset for emergency response applications.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference38 articles.

1. Description and preliminary validation of the PMSS fast response parallel atmospheric flow and dispersion solver in complex built-up areas

2. Best Practice Guidelines for the Use of the Atmospheric Dispersion Models in Emergency Response Tools at Local-Scale in Case of Hazmat Releases into the Airhttp://elizas.eu/images/Documents/Best%20Practice%20Guidelines_web.pdf

3. Validation and Sensitivity Study of the PMSS Modelling System for Puff Releases in the Joint Urban 2003 Field Experiment

4. ADMS-Urban: An air quality management system for traffic, domestic and industrial pollution;McHugh;Int. J. Environ. Pollut.,1997

5. Development and Evaluation of the PRIME Plume Rise and Building Downwash Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3