Spatiotemporal Variability of Actual Evapotranspiration and the Dominant Climatic Factors in the Pearl River Basin, China

Author:

Gao Weizhi,Wang Zhaoli,Huang GuoruORCID

Abstract

Evapotranspiration is a vital component of the land surface process, thus, a more accurate estimate of evapotranspiration is of great significance to agricultural production, research on climate change, and other activities. In order to explore the spatiotemporal variation of evapotranspiration under global climate change in the Pearl River Basin (PRB), in China, this study conducted a simulation of actual evapotranspiration (ETa) during 1960–2014 based on the variable infiltration capacity (VIC) model with a high spatial resolution of 0.05°. The nonparametric Mann–Kendall (M–K) test and partial correlation analysis were used to examine the trends of ETa. The dominant climatic factors impacting on ETa were also examined. The results reveal that the annual ETa across the whole basin exhibited a slight but not significant increasing trend during the 1960–2014 period, whereas a significant decreasing trend was found during the 1960–1992 period. At the seasonal scale, the ETa showed a significant upward trend in summer and a significant downward trend in autumn. At the spatial scale, the ETa generally showed a decreasing, but not significant, trend in the middle and upper stream of the PRB, while in the downstream areas, especially in the Pearl River Delta and Dongjiang River Basin, it exhibited a significant increasing trend. The variation of the ETa was mainly associated with sunshine hours and average air pressure. The negative trend of the ETa in the PRB before 1992 may be due to the significant decrease in sunshine hours, while the increasing trend of the ETa after 1992 may be due to the recovery of sunshine hours and the significant decrease of air pressure. Additionally, we found that the “paradox” phenomenon detected by ETa mainly existed in the middle-upper area of the PRB during the period of 1960–1992.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3