Calibration Procedure and Accuracy of Wind and Turbulence Measurements with Five-Hole Probes on Fixed-Wing Unmanned Aircraft in the Atmospheric Boundary Layer and Wind Turbine Wakes

Author:

Rautenberg Alexander,Allgeier Jonas,Jung Saskia,Bange JensORCID

Abstract

For research in the atmospheric boundary layer and in the vicinity of wind turbines, the turbulent 3D wind vector can be measured from fixed-wing unmanned aerial systems (UAS) with a five-hole probe and an inertial navigation system. Since non-zero vertical wind and varying horizontal wind causes variations in the airspeed of the UAS, and since it is desirable to sample with a flexible cruising airspeed to match a broad range of operational requirements, the influence of airspeed variations on mean values and turbulence statistics is investigated. Three calibrations of the five-hole probe at three different airspeeds are applied to the data of three flight experiments. Mean values and statistical moments of second order, calculated from horizontal straight level flights are compared between flights in a stably stratified polar boundary layer and flights over complex terrain in high turbulence. Mean values are robust against airspeed variations, but the turbulent kinetic energy, variances and especially covariances, and the integral length scale are strongly influenced. Furthermore, a transect through the wake of a wind turbine and a tip vortex is analyzed, showing the instantaneous influence of the intense variations of the airspeed on the measurement of the turbulent 3D wind vector. For turbulence statistics, flux calculations, and quantitative analysis of turbine wake characteristics, an independent measurement of the true airspeed with a pitot tube and the interpolation of calibration polynomials at different Reynolds numbers of the probe’s tip onto the Reynolds number during the measurement, reducing the uncertainty significantly.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3