Feasibility of the Inverse-Dispersion Model for Quantifying Drydock Emissions

Author:

Kura Bhaskar,Jilla Abhinay

Abstract

Important processes within the shipbuilding and ship repair industry include metal cutting, welding, surface preparation, and painting. When dealing with ship repair, ships are brought into drydocks to carry out necessary repairs. Typical repairs include but are not limited to dry or wet abrasive blasting for removing the old paint and rust followed by repainting of the external hull. Also, the painting of superstructure is carried out as necessary. Additionally, many metal cutting and welding operations are carried out. Air pollutant emissions generated from repair operations carried out within drydock are challenging to quantify, particularly if some of these repair activities do not have reliable emission factors. This paper investigates the feasibility of the inverse dispersion model for quantifying drydock emissions in a shipyard environment. The authors use a well-established Gaussian dispersion model that is used as a regulatory model in the United States and many other countries in a two-step process using a code developed in MATLAB: (1) Source-to-Receptor modeling to compute ambient concentrations using assumed emissions from various sources and meteorological conditions, and (2) The utilization of the computed ambient concentrations at various receptors to compute emissions at those sources (assumed in the first step) using the inverse Gaussian code developed.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference26 articles.

1. Global Warming Engineering Solutions Series: Green Energy and Technology,2010

2. Environmental implications related to the shipbuilding and ship repairing activity in Greece;Papaioannou;J. Marit. Transp. Sci.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3