Heterogeneous Freezing of Liquid Suspensions Including Juices and Extracts from Berries and Leaves from Perennial Plants

Author:

Felgitsch Laura,Bichler Magdalena,Burkart Julia,Fiala Bianca,Häusler Thomas,Hitzenberger Regina,Grothe Hinrich

Abstract

Heterogeneous ice nucleation in the atmosphere is not fully understood. In particular, our knowledge of biological materials and their atmospheric ice nucleation properties remains scarce. Here, we present the results from systematic investigations of the ice nucleation activity of plant materials using cryo-microscopy. We examined berry juices, frozen berries, as well as extracts of leaves and dried berries of plants native to boreal regions. All of our samples possess reasonable ice nucleation activity. Their ice nucleating particle concentrations per unit of water volume vary between 9.7 × 105 and 9.2 × 109 cm−3 when examined within temperatures of −12 to −34 °C. Mean freezing temperatures ranged from −18.5 to −45.6 °C. We show that all samples contained ice nuclei in a size range below 0.2 µm and remain active if separated from coarse plant tissue. The results of examining ice nucleation properties of leaves and dry berry extracts suggests that their ice-nucleating components can be easily suspended in water. Sea buckthorn and black currant were analyzed using subtilisin (a protease) and urea. Results suggest proteinaceous compounds to play an important role in their ice nucleation activity. These results show that separation between ice nucleation particles stemming from microorganisms and those stemming from plants cannot be differentiated solely on proteinaceous features. Further oxidation experiments with ozone showed that black currant is highly stable towards ozone oxidation, indicating a long atmospheric life time.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3