Author:
Cai Li,Zou Xin,Wang Jianguo,Li Quanxin,Zhou Mi,Fan Yadong
Abstract
In the summer of 2013, a three-dimensional (3D)-based Foshan Total Lightning Location System (FTLLS), embedded with differential time of arrival (DTOA) techniques, was installed and started its operation in Foshan, Guangdong Province, China. In this paper, the geographical distribution and set-up information of FTLLS, the estimated locating errors and locating results, as well as its initial operation results are presented. FTLLS consists of nine sub-stations that receive electromagnetic waves associated with lightning discharges and locates VLF/LF (200 Hz–500 kHz) radiation sources in 3D. The remote sub-stations acquired triggered waveforms with a duration of 0.5 ms, a resolution of 12-bits, and a GPS-based sferic time tags of 24 h per day. Cloud-to-ground (CG) lightning events, intra-cloud (IC) lightning events and narrow bipolar events (NBEs) were located by FTLLS. Based on the Monte Carlo simulation, the two-dimensional horizontal location error is basically less than 100 m, and the vertical error (altitude) is less than 200 m when the lightning event occurs within the network. On the other hand, over 14 million lightning strikes were recorded successfully by FTLLS during the period of May to October in 2014, among which IC events, CG events and NBEs accounted for 65%, 34% and 1%, respectively. It is shown that FTLLS is capable of a fine three-dimensional (3D) location, in which the altitude parameters obtained are reasonable and well consistent with observed data in the previous studies. The location results of thunderstorms were additionally verified through simultaneously-observed radar data.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献