Anthropogenic CH4 Emissions in the Yangtze River Delta Based on A “Top-Down” Method

Author:

Huang Wenjing,Xiao Wei,Zhang Mi,Wang Wei,Xu Jingzheng,Hu Yongbo,Hu Cheng,Liu Shoudong,Lee Xuhui

Abstract

There remains significant uncertainty in the estimation of anthropogenic CH4 emissions at local and regional scales. We used atmospheric CH4 and CO2 concentration data to constrain the anthropogenic CH4 emission in the Yangtze River Delta one of the most populated and economically important regions in China. The observation of atmospheric CH4 and CO2 concentration was carried out from May 2012 to April 2017 at a rural site. A tracer correlation method was used to estimate the anthropogenic CH4 emission in this region, and compared this “top-down” estimate with that obtained with the IPCC inventory method. The annual growth rates of the atmospheric CO2 and CH4 mole fractions are 2.5 ± 0.7 ppm year−1 and 9.5 ± 4.7 ppb year−1, respectively, which are 9% and 53% higher than the values obtained at Waliguan (WLG) station. The average annual anthropogenic CH4 emission is 4.37 (± 0.61) × 109 kg in the YRD (excluding rice cultivation). This “top-down” estimate is 20–70% greater than the estimate based on the IPCC method. We suggest that possible sources for the discrepancy include low biases in the IPCC calculation of emission from landfills, ruminants and the transport sector.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference101 articles.

1. Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017,2018

2. The IPCC Fifth Assessment Report—Climate Change 2013: The Physical Science Basis,2013

3. Working Group I, Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change;Solomon,2007

4. Observational constraints on recent increases in the atmospheric CH4burden

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3