Abstract
This study examines whether there are significant differences in intensity and destructiveness of landfalling tropical cyclones (TCs) over China in central Pacific warm (CPW), eastern Pacific warm (EPW) and La Niña (LA) years. By analyzing different seasons and locations of TCs making landfall over China, it was found that TCs in LA years generally had a larger power dissipation index (PDI) and may cause more disasters in China, while TCs in EPW years had a larger PDI over South China in autumn. A larger PDI of TCSC (landing location in Southern China) usually occurred in EPW years and a larger PDI of TCEC (landing location in Eastern China) occurred in LA years, compared with CPW years. The TCs in LA years were generally stronger, more frequent, and of longer duration over China, because of the positive relative humidity (RH) anomalies, the significant anomalous cyclone that occupied the South China Sea (SCS), and the easterly wind anomalies providing a beneficial steering flow for TCs making landfall. In EPW years, although TCs were less frequent, they had stronger intensity when making landfall and a longer lifetime over land which was mainly caused by a broad band of anomalous westerlies over the SCS giving rise to a belt of positive relative vorticity anomalies, as well as the slow translation speed of TCs before landfall supplying more energy for TCs to survive over land. Overall, we conclude that greater caution is warranted when TCs occur in LA and EPW years, as they may result in more serious disasters in China.
Funder
National Natural Science Foundation of China
Basic Research Fund of CAMS
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献