Semi-Poisson Statistics in Relativistic Quantum Billiards with Shapes of Rectangles

Author:

Dietz Barbara1ORCID

Affiliation:

1. Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea

Abstract

Rectangular billiards have two mirror symmetries with respect to perpendicular axes and a twofold (fourfold) rotational symmetry for differing (equal) side lengths. The eigenstates of rectangular neutrino billiards (NBs), which consist of a spin-1/2 particle confined through boundary conditions to a planar domain, can be classified according to their transformation properties under rotation by π (π/2) but not under reflection at mirror-symmetry axes. We analyze the properties of these symmetry-projected eigenstates and of the corresponding symmetry-reduced NBs which are obtained by cutting them along their diagonal, yielding right-triangle NBs. Independently of the ratio of their side lengths, the spectral properties of the symmetry-projected eigenstates of the rectangular NBs follow semi-Poisson statistics, whereas those of the complete eigenvalue sequence exhibit Poissonian statistics. Thus, in distinction to their nonrelativistic counterpart, they behave like typical quantum systems with an integrable classical limit whose eigenstates are non-degenerate and have alternating symmetry properties with increasing state number. In addition, we found out that for right triangles which exhibit semi-Poisson statistics in the nonrelativistic limit, the spectral properties of the corresponding ultrarelativistic NB follow quarter-Poisson statistics. Furthermore, we analyzed wave-function properties and discovered for the right-triangle NBs the same scarred wave functions as for the nonrelativistic ones.

Funder

Institute for Basic Science

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference102 articles.

1. On the connection between quantization of nonintegrable systems and statistical theory of spectra;Casati;Lett. Nuovo Cim.,1980

2. Mehta, M.L. (1990). Random Matrices, Academic Press.

3. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws;Bohigas;Phys. Rev. Lett.,1984

4. Berry, M. (1979). Structural Stability in Physics, Pergamon Press.

5. Giannoni, M., Voros, A., and Zinn-Justin, J. (1989). Chaos and Quantum Physics, Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graphene billiards with fourfold symmetry;Physical Review Research;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3