Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China

Author:

Ren Fang1,Xu Jiaoyang1,Wu Yi1,Li Tao1ORCID,Li Mingyang1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Evaluating the long-term urban forest ecological environmental quality (EEQ) and analyzing the drivers of its spatiotemporal changes can provide a scientific basis for making long-term urban forest planning decisions. Taking into account the characteristics of urban forest parks with low area proportions of construction land and bare land, high vegetation coverage, and serious forest disturbances, we constructed a modified urban forest park EEQ evaluation index based on a remote sensing ecological index named MRSEI, which is composed of the Landsat enhanced vegetation index (EVI), wetness, land surface temperature (LST), and forest disturbance index (FDI). We selected the Nanjing Zijin Mountain National Forest Park as the study area, used landsat time series stack (LTSS) remote sensing images from 1990 to 2020 as the main data source, and adopted the suggested modified MRSEI, the Theil-Sen median method, and the Hurst index to evaluate the EEQ to analyze its spatiotemporal variations and its driving factors in the study area. The main research results were as follows: (1) the EEQ of Zijin Mountain showed an up-and-down, overall slowly increasing trend from 1990 to 2020, while the spatial auto-correlation coefficient showed an overall decreasing trend; (2) the area percentage of the EEQ-persistent region accounted for 78.69%, and the anti-sustainable region accounted for 21.31%; (3) the spatial centers of the EEQ in the study area were mainly concentrated on the middle and upper part of the southern slope of Zijin Mountain, moving southward from 1990 to 2020; (4) the analysis of drivers showed that climate factors, forest landscape structure, forest disturbances, and forest growth conditions were the main driving factors affecting the EEQ in the study area. These results provide a research framework for the analysis of EEQ changes over a long-term period in the urban forest parks of China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference66 articles.

1. Progress and future of China’s annual report on remote sensing monitoring of global ecosystem and environment;Niu;J. Remote Sens.,2018

2. Review of research progress and methodology of ecological environment quality assessment;Jing;Environ. Sci. Technol.,2013

3. Gasparovic, M., and Dobrinic, D. (2020). Comparative assessment of machine learning methods for urban vegetation mapping using multitemporal sentinel-1 imagery. Remote Sens., 12.

4. Remote sensing change detection for ecological monitoring in United States protected areas;Willis;Biol. Conserv.,2015

5. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches;Powell;Remote Sens. Environ.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3