Interoperable IoMT Approach for Remote Diagnosis with Privacy-Preservation Perspective in Edge Systems

Author:

Subramaniam Erana Veerappa Dinesh1ORCID,Srinivasan Kathiravan2ORCID,Qaisar Saeed Mian34ORCID,Pławiak Paweł56ORCID

Affiliation:

1. Department of Computer Science and Business Systems, Ramco Institute of Technology, Rajapalayam 626117, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India

3. CESI LINEACT, 69100 Lyon, France

4. Electrical and Computer Engineering Department, Effat University, Jeddah 22332, Saudi Arabia

5. Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland

6. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

Abstract

The emergence of the Internet of Medical Things (IoMT) has brought together developers from the Industrial Internet of Things (IIoT) and healthcare providers to enable remote patient diagnosis and treatment using mobile-device-collected data. However, the utilization of traditional AI systems raises concerns about patient privacy. To address this issue, we present a privacy-enhanced approach for illness diagnosis within the IoMT framework. Our proposed interoperable IoMT implementation focuses on optimizing IoT network performance, including throughput, energy consumption, latency, packet delivery ratio, and network longevity. We achieve these improvements using techniques such as device authentication, energy-efficient clustering, environmental monitoring using Circular-based Hidden Markov Model (C-HMM), data verification using Awad’s Entropy-based Ten-Fold Cross Entropy Verification (TCEV), and data confidentiality using Twine-LiteNet-based encryption. We employ the Search and Rescue Optimization algorithm (SRO) for optimal route selection, and the encrypted data are securely stored in a cloud server. With extensive network simulations using ns-3, our approach demonstrates substantial enhancements in the specified performance metrics compared with previous works. Specifically, we observe a 20% increase in throughput, a 15% reduction in packet drop rate (PDR), a 35% improvement in network lifetime, and a 10% decrease in energy consumption and delay. These findings underscore the efficacy of our approach in enhancing IoT network interoperability and protection, fostering improved patient care and diagnostic capabilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3