Urban Site Development as Temporal Carbon Storage—A Case Study in Germany

Author:

Hafner AnnetteORCID,Slabik Simon,Storck Michael

Abstract

Increasing the use of sustainably sourced wood in construction for temporal carbon storage could be one vital part in the transition towards reaching the sustainable development goals for climate action and sustainable cities and communities. This paper explains the detailed steps from the planning to the realization process and shows how building with wood could be linked to the entire process from the sales of building plots to the realization of projects. Additionally, based on EN 15978, life cycle assessment (LCA) results of the constructed buildings were conducted to calculate the realistic carbon storage and the global warming potential for all new erected buildings on the site. The case study area and living lab is a building site in Munich with 566 flats, which will be finished in 2020 and will be the largest urban timber neighborhood in Germany by then. All development activities are summarized under the concept of building an eco-city with low carbon emissions and a high standard for living for all groups of inhabitants. Eight buildings with different material selections ranging from wood-constructions to wood-concrete hybrid constructions and concrete constructions with different energy standards are environmentally assessed. Results show that about 12.5 million kg of CO2 are stored in the wooden structures over the estimated life cycle of 50 years within this neighborhood. This clearly demonstrates the potential that building with wood has for achieving climate targets. Further results show that heating energy demand and material choices have a significant influence on LCA results.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference22 articles.

1. Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme (2019): Global Status Report for Buildings and Construction 2019: Towards a zero-emission, efficient and resilient buildings and construction sectorhttps://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019

2. Modelling frameworks for delivering low-carbon cities: advocating a normalized practice

3. Developing low-carbon cities through pilots

4. Urban Equilibrium for sustainable cities and the contribution of timber buildings to balance urban carbon emissions: A New Zealand case study

5. Implications of Low Carbon City Sustainability Strategies for 2050

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3