Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review

Author:

Wei Fan,Shahid Munazzam Jawad,Alnusairi Ghalia S. H.ORCID,Afzal MuhammadORCID,Khan Aziz,El-Esawi Mohamed A.ORCID,Abbas Zohaib,Wei Kunhua,Zaheer Ihsan ElahiORCID,Rizwan MuhammadORCID,Ali ShafaqatORCID

Abstract

The textile industry is one of the most chemically intensive industries, and its wastewater is comprised of harmful dyes, pigments, dissolved/suspended solids, and heavy metals. The treatment of textile wastewater has become a necessary task before discharge into the environment. The textile effluent can be treated by conventional methods, however, the limitations of these techniques are high cost, incomplete removal, and production of concentrated sludge. This review illustrates recent knowledge about the application of floating treatment wetlands (FTWs) for remediation of textile wastewater. The FTWs system is a potential alternative technology for textile wastewater treatment. FTWs efficiently removed the dyes, pigments, organic matter, nutrients, heavy metals, and other pollutants from the textile effluent. Plants and bacteria are essential components of FTWs, which contribute to the pollutant removal process through their physical effects and metabolic process. Plants species with extensive roots structure and large biomass are recommended for vegetation on floating mats. The pollutant removal efficiency can be enhanced by the right selection of plants, managing plant coverage, improving aeration, and inoculation by specific bacterial strains. The proper installation and maintenance practices can further enhance the efficiency, sustainability, and aesthetic value of the FTWs. Further research is suggested to develop guidelines for the selection of right plants and bacterial strains for the efficient remediation of textile effluent by FTWs at large scales.

Funder

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3