Comparison of Multi-Methods for Identifying Maize Phenology Using PhenoCams

Author:

Guo YahuiORCID,Chen Shouzhi,Fu Yongshuo H.ORCID,Xiao Yi,Wu Wenxiang,Wang HanxiORCID,Beurs Kirsten deORCID

Abstract

Accurately identifying the phenology of summer maize is crucial for both cultivar breeding and fertilizer controlling in precision agriculture. In this study, daily RGB images covering the entire growth of summer maize were collected using phenocams at sites in Shangqiu (2018, 2019 and 2020) and Nanpi (2020) in China. Four phenological dates, including six leaves, booting, heading and maturity of summer maize, were pre-defined and extracted from the phenocam-based images. The spectral indices, textural indices and integrated spectral and textural indices were calculated using the improved adaptive feature-weighting method. The double logistic function, harmonic analysis of time series, Savitzky–Golay and spline interpolation were applied to filter these indices and pre-defined phenology was identified and compared with the ground observations. The results show that the DLF achieved the highest accuracy, with the coefficient of determination (R2) and the root-mean-square error (RMSE) being 0.86 and 9.32 days, respectively. The new index performed better than the single usage of spectral and textural indices, of which the R2 and RMSE were 0.92 and 9.38 days, respectively. The phenological extraction using the new index and double logistic function based on the PhenoCam data was effective and convenient, obtaining high accuracy. Therefore, it is recommended the adoption of the new index by integrating the spectral and textural indices for extracting maize phenology using PhenoCam data.

Funder

the National Funds for Distinguished Young Youths

the National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3