Abstract
Snow cover is an important water source and even an Essential Climate Variable (ECV) as defined by the World Meteorological Organization (WMO). Assessing snow phenology and its driving factors in Northeast China will help with comprehensively understanding the role of snow cover in regional water cycle and climate change. This study presents spatiotemporal variations in snow phenology and the relative importance of potential drivers, including climate, geography, and the normalized difference vegetation index (NDVI), based on the MODIS snow products across Northeast China from 2001 to 2018. The results indicated that the snow cover days (SCD), snow cover onset dates (SCOD) and snow cover end dates (SCED) all showed obvious latitudinal distribution characteristics. As the latitude gradually increases, SCD becomes longer, SCOD advances and SCED delays. Overall, there is a growing tendency in SCD and a delayed trend in SCED across time. The variations in snow phenology were driven by mean temperature, followed by latitude, while precipitation, aspect and slope all had little effect on the SCD, SCOD and SCED. With decreasing temperature, the SCD and SCED showed upward trends. The mean temperature has negatively correlation with SCD and SCED and positively correlation with SCOD. With increasing latitude, the change rate of the SCD, SCOD and SCED in the whole Northeast China were 10.20 d/degree, −3.82 d/degree and 5.41 d/degree, respectively, and the change rate of snow phenology in forested areas was lower than that in nonforested areas. At the same latitude, the snow phenology for different underlying surfaces varied greatly. The correlations between the snow phenology and NDVI were mainly positive, but weak correlations accounted for a large proportion.
Funder
Science and Technology Basic Resources Investigation Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献