Abstract
Water use patterns were explored for three small communities that are located in proximity to agricultural fields and rely on their local wells for potable water supply. High-resolution water use data, collected over a four-year period, revealed significant temporal variability. Monthly, daily, and hourly water use patterns were well described by autoregressive moving average (ARMA) models. Model development was supported by unsupervised clustering analysis via self-organizing maps (SOMs) that revealed similarities of water use patterns and confirmed the time-series water use model attributes. The inclusion of ambient temperature and rainfall as model attributes improved ARMA model performance for daily and hourly water use from R2 ~0.86–0.87 to 0.94–0.97 and from R2 ~0.85–0.89 to 0.92–0.98, respectively. Water use predictions for an entire year forward in time was feasible demonstrating ARMA models’ performance of (i) R2 ~0.90–0.94 and average absolute relative error (AARE) of ~2.9–4.9% for daily water use, and (ii) R2 ~0.81–0.95 and AARE ~1.9–3.8% for hourly water use. The study suggests that ARMA modeling should be useful for analysis of temporally variable water use in support of water source management, as well as assessing capacity building for small water systems including water treatment needs and wastewater handling.
Funder
California State Water Resources Control Board
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献