A Review of Current and Historical Research Contributions to the Development of Ground Autonomous Vehicles for Agriculture

Author:

Rondelli Valda,Franceschetti BrunoORCID,Mengoli DarioORCID

Abstract

In this study, a comprehensive overview of the available autonomous ground platforms developed by universities and research groups that were specifically designed to handle agricultural tasks was performed. As cost reduction and safety improvements are two of the most critical aspects for farmers, the development of autonomous vehicles can be of major interest, especially for those applications that are lacking in terms of mechanization improvements. This review aimed to provide a literature evaluation of present and historical research contributions toward designing and prototyping agricultural ground unmanned vehicles. The review was motivated by the intent to disseminate to the scientific community the main features of the autonomous tractor named BOPS-1960, which was conceived in the 1960s at the Alma Mater Studiorum University of Bologna (UNIBO). Jointly, the main characteristics of the modern DEDALO unmanned ground vehicle (UGV) for orchard and vineyard operations that was designed recently were evaluated. The basic principles, technology and sensors used in the two UNIBO prototypes are described in detail, together with an analysis of UGVs for agriculture conceived in recent years by research centers all around the world.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human–Robot Interaction through Dynamic Movement Recognition for Agricultural Environments;AgriEngineering;2024-08-01

2. Performance evaluation of unmanned machine-tractor units;Agricultural Science Euro-North-East;2024-06-26

3. Design and Modeling of a Balloon Robot with Wheel Paddles for Agricultural Use;2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR);2024-06-23

4. Design and Kinematic Analysis of an Aerial Robotic Arm for Precision Agriculture;2024 Intermountain Engineering, Technology and Computing (IETC);2024-05-13

5. Enhancing Hill Farming Efficiency Using Unmanned Agricultural Vehicles: A Comprehensive Review;Transactions of the Indian National Academy of Engineering;2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3