Dynamic Reliability Analysis of Layered Slope Considering Soil Spatial Variability Subjected to Mainshock–Aftershock Sequence

Author:

Zhou Huaiming1,Wang Gan23,Yu Xiang3,Pang Rui24ORCID

Affiliation:

1. China Communications Investment Nanjing Co., Ltd., Nanjing 210018, China

2. School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

3. College of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

4. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The slope instability brought on by earthquakes frequently results in significant property damage and casualties. At present, the research on displacement response of a slope under earthquake has mainly emphasized the action of the mainshock, without accounting for the impact of an aftershock, and the spatial variability of material parameters is often neglected. The spatial variability of parameters is fully accounted for in this paper, and dynamic reliability of permanent displacement (DP) of a slope produced by the mainshock–aftershock sequence (MAS) is studied. A slope reliability analysis method is proposed based on the Newmark displacement method and the generalized probability density evolution method (GPDEM) to quantify the effect of the spatial variability of materials parameters on dynamic reliability. Firstly, the parameter random field is generated based on the spectral representation method, and the randomly generated parameters are assigned to the finite element model (FEM). In addition, the random simulation method of MAS considering the correlation between aftershock and mainshock is adopted based on the Copula function to generate the MAS. Then, the DP of slopes caused by the MAS considering the spatial variability is calculated based on the Newmark method. The impacts of the coefficient of variation (COV) and aftershock on the DP of slope is analyzed by means of mean values. Finally, the effect of COV and aftershock on the reliability of DP is explained from a probabilistic point of view based on the GPDEM. The results revealed that with the increase in the COV, the mean of the DP of the slope shows a trend of increasing gradually. The DP of slope is more sensitive to the coefficient of variation of friction angle (COVF). The mean DP of the slope induced by the MAS is larger compared to the single mainshock, and the PGA has a significant impact on the DP.

Funder

National Key Research and Development Program of China

China National Natural Science Foundation

Liaoning Province Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3