Abstract
There are numerous priority deriving methods (PDMs) for pairwise-comparison-based (PCB) problems. They are often examined within the Analytic Hierarchy Process (AHP), which applies the Principal Right Eigenvalue Method (PREV) in the process of prioritizing alternatives. It is known that when decision makers (DMs) are consistent with their preferences when making evaluations concerning various decision options, all available PDMs result in the same priority vector (PV). However, when the evaluations of DMs are inconsistent and their preferences concerning alternative solutions to a particular problem are not transitive (cardinally), the outcomes are often different. This research study examines selected PDMs in relation to their ranking credibility, which is assessed by relevant statistical measures. These measures determine the approximation quality of the selected PDMs. The examined estimates refer to the inconsistency of various Pairwise Comparison Matrices (PCMs)—i.e., W = (wij), wij > 0, where i, j = 1,…, n—which are obtained during the pairwise comparison simulation process examined with the application of Wolfram’s Mathematica Software. Thus, theoretical considerations are accompanied by Monte Carlo simulations that apply various scenarios for the PCM perturbation process and are designed for hypothetical three-level AHP frameworks. The examination results show the similarities and discrepancies among the examined PDMs from the perspective of their quality, which enriches the state of knowledge about the examined PCB prioritization methodology and provides further prospective opportunities.
Subject
General Physics and Astronomy
Reference106 articles.
1. Ramon Llull: from ‘Ars electionis’ to social choice theory
2. Handbook of Social Choice and Welfare;Arrow,2011
3. Elemente der Psychophysik;Fechner,1860
4. A law of comparative judgment.
5. The Method of Paired Comparisons;David,1988
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献