Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers

Author:

Rahimzadeh MohammadORCID,Samadi Hamid,Mohammadi Nikta Shams

Abstract

Environmental energy harvesting is a major operation in research and industries. Currently, researchers have started analyzing small-scale energy scavengers for the supply of energy in low-power electrical appliances. One area of interest is the use of piezoelectric materials, especially in the presence of mechanical vibrations. This study analyzed a unimorph cantilever beam in different modes by evaluating the effects of various parameters, such as geometry, piezoelectric material, lengths of layers, and the proof mass to the energy harvesting process. The finite element method was employed for analysis. The proposed model was designed and simulated in COMSOL Multiphysics, and the output parameters, i.e., natural frequencies and the output voltage, were then evaluated. The results suggested a considerable effect of geometrical and physical parameters on the energy harvesters and could lead to designing devices with a higher functional efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nano/micro-beam deflections: Investigation of subjected forces and applications;Physics Open;2023-12

2. Simulation and Optimization of Substrate Layer Material for PVDF Cantilever Based Vibration Energy Harvesting System;IEEE Sensors Journal;2023-12-01

3. The Role of Artificial Intelligence in Managing Emergencies and Crises within Smart Cities;2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM);2023-09-13

4. Thermohydraulic performance of new minichannel heat sink with grooved barriers;International Communications in Heat and Mass Transfer;2023-05

5. Modeling and Parametric Investigation of Vibration Energy Harvesting using Bimorph Piezoelectric Beam with a Tip Mass;2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE);2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3