A Digital Twin Decision Support System for the Urban Facility Management Process

Author:

Bujari ArmirORCID,Calvio AlessandroORCID,Foschini LucaORCID,Sabbioni Andrea,Corradi AntonioORCID

Abstract

The ever increasing pace of IoT deployment is opening the door to concrete implementations of smart city applications, enabling the large-scale sensing and modeling of (near-)real-time digital replicas of physical processes and environments. This digital replica could serve as the basis of a decision support system, providing insights into possible optimizations of resources in a smart city scenario. In this article, we discuss an extension of a prior work, presenting a detailed proof-of-concept implementation of a Digital Twin solution for the Urban Facility Management (UFM) process. The Interactive Planning Platform for City District Adaptive Maintenance Operations (IPPODAMO) is a distributed geographical system, fed with and ingesting heterogeneous data sources originating from different urban data providers. The data are subject to continuous refinements and algorithmic processes, used to quantify and build synthetic indexes measuring the activity level inside an area of interest. IPPODAMO takes into account potential interference from other stakeholders in the urban environment, enabling the informed scheduling of operations, aimed at minimizing interference and the costs of operations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

2. WWW recycling for a better world

3. The Use of Digital Twins for Urban Planning to Yield US$280 Billion in Cost Savings by 2030https://www.abiresearch.com/press/use-digital-twins-urban-planning-yield-us280-billion-cost-savings-2030/

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3