GDF15 Contributes to the Regulation of the Mechanosensitive Responses of PdL Fibroblasts through the Modulation of IL-37

Author:

Steinmetz Julia1,Stemmler Albert1,Hennig Christoph-Ludwig1,Symmank Judit1ORCID,Jacobs Collin1

Affiliation:

1. Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany

Abstract

During orthodontic tooth movement (OTM), areas of compressive and tensile forces are generated in the periodontal ligament (PdL), a mechanoreactive connective tissue between the teeth and alveolar bone. Mechanically stimulated PdL fibroblasts (PdLFs), the main cell type of PdL, express significantly increased levels of growth differentiation factor 15 (GDF15). In compressed PdL areas, GDF15 plays a fundamental role in modulating relevant OTM processes, including inflammation and osteoclast activation. However, the specific function of this factor in tensile areas has not yet been investigated. Thus, the aim of this study was to investigate the role of GDF15 in the mechanoresponse of human PdLFs (hPdLFs) that were exposed to biaxial tensile forces in vitro. Using siRNA-mediated knockdown experiments, we demonstrated that GDF15 had no impact on the anti-inflammatory force response of elongated hPdLFs. Although the anti-inflammatory markers IL1RN and IL10, as well as the activation of immune cells remained unaffected, we demonstrated an inhibitory role of GDF15 for the IL-37 expression. By analyzing osteogenic markers, including ALPL and RUNX2, along with an assessment of alkaline phosphatase activation, we further showed that the regulation of IL-37 by GDF15 modulates the osteogenic differentiation potential of hPdLFs. Despite bone resorption in tensile areas being rather limited, GDF15 was also found to positively modulate osteoclast activation in those areas, potentially by adjusting the IL-37 levels. In light of our new findings, we hypothesize that GDF15 modulates force-induced processes in tissue and bone remodeling through its various intra- and extracellular signaling pathways as well as interaction partners. Potentially acting as a master regulator, the modulation of GDF15 levels may hold relevance for clinical implications.

Funder

Deutsche Gesellschaft für Kieferorthopädie e.V.

German Research Foundation

Open Access Publication Fund of the Thueringer Universitaets- und Landesbibliothek Jena

Publisher

MDPI AG

Reference72 articles.

1. Orthodontic treatment and the oral health-related quality of life of patients;Navabi;J. Dent.,2012

2. Clinical and histologic observations on tooth movement during and after orthodontic treatment;Reitan;Am. J. Orthod.,1967

3. Orthodontic tooth movement: The biology and clinical implications;Li;Kaohsiung J. Med. Sci.,2018

4. Biological aspects of orthodontic tooth movement: A review of literature;Asiry;Saudi J. Biol. Sci.,2018

5. Mechanobiology of orthodontic tooth movement: An update;Maltha;J. World Fed. Orthod.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3