An Energy-Efficient LoRa Multi-Hop Protocol through Preamble Sampling for Remote Sensing

Author:

Leenders Guus1ORCID,Callebaut Gilles1ORCID,Ottoy Geoffrey1ORCID,Van der Perre Liesbet1ORCID,De Strycker Lieven1ORCID

Affiliation:

1. Dramco, ESAT-WaveCore, KU Leuven, 9000 Ghent, Belgium

Abstract

Internet of Things technologies open up new applications for remote monitoring of forests, fields, etc. These networks require autonomous operation: combining ultra-long-range connectivity with low energy consumption. While typical low-power wide-area networks offer long-range characteristics, they fall short in providing coverage for environmental tracking in ultra-remote areas spanning hundreds of square kilometers. This paper presents a multi-hop protocol to extend the sensor’s range, whilst still enabling low-power operation: maximizing sleep time by employing prolonged preamble sampling, and minimizing the transmit energy per actual payload bit through forwarded data aggregation. Real-life experiments, as well as large-scale simulations, prove the capabilities of the proposed multi-hop network protocol. By employing prolonged preamble sampling a node’s lifespan can be increased to up to 4 years when transmitting packages every 6 h, a significant improvement compared to only 2 days when continuously listening for incoming packages. By aggregating forwarded data, a node is able to further reduce its energy consumption by up to 61%. The reliability of the network is proven: 90% of nodes achieve a packet delivery ratio of at least 70%. The employed hardware platform, network protocol stack and simulation framework for optimization are released in open access.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3