Author:
Gloria Antonio,Maietta Saverio,Richetta Maria,Ausiello Pietro,Martorelli Massimo
Abstract
The control of the process–structure–property relationship of a material plays an important role in the design of biomedical metal devices featuring desired properties. In the field of endodontics, several post-core systems have been considered, which include a wide range of industrially developed posts. Endodontists generally use posts characterized by different materials, sizes, and shapes. Computer-aided design (CAD) and finite element (FE) analysis were taken into account to provide further insight into the effect of the material–shape combination of metal posts on the mechanical behavior of endodontically treated anterior teeth. In particular, theoretical designs of metal posts with two different shapes (conical-tapered and conical-cylindrical) and consisting of materials with Young’s moduli of 110 GPa and 200 GPa were proposed. A load of 100 N was applied on the palatal surface of the crown at 45° to the longitudinal axis of the tooth. Linear static analyses were performed with a non-failure condition. The results suggested the possibility to tailor the stress distribution along the metal posts and at the interface between the post and the surrounding structures, benefiting from an appropriate combination of a CAD-based approach and material selection. The obtained results could help to design metal posts that minimize stress concentrations.
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献