Abstract
The ductility enhancement of an AA7075 aluminum alloy aided by a friction stir process (FSP) and various heat treatments was investigated and compared in terms of outcome with full annealing (O). The results indicate that a big improvement in the tensile ductility was achieved by freezing the sample at temperatures below 0 °C after the solution treatment and water quenching (W treatment), and further improvement could be acquired via a friction stir process due to grain refinement (<6 μm). Thus, the observed improvement in tensile ductility can be explained by the fact that the W treatment and friction stir processing scheme had an increased strain-hardening effect and decreased the presence of intermetallic particles that are harmful to uniform tensile deformation, consequently causing strain localization in the early stage of tensile deformation, which suggests that these treatment are a potential solution for insufficient formability. In general, the elongation to failure values for the W and FSP-treated specimens (>40%) were at least 1.5-fold greater than that of the annealed alloy. In addition, serrated flow could be observed in the tensile flow curves, and both the Piobert–Lüders effect and the Portevin–LeChatelier (PL) effect could be observed. The enhancement in the tensile ductility was examined in terms of the existence of intermetallic particles and the supersaturated concentration of the solid solution.
Subject
General Materials Science,Metals and Alloys
Reference47 articles.
1. Application of modern aluminum alloys to aircraft
2. Trends in Aluminium Alloy Development and Their Joining Methods;Rajan;Rev. Adv. Mater. Sci.,2016
3. Advanced Aluminium and Hybrid Aerostructures for Future Aircraft
4. Metallurgy. Materials Data Handbook: Aluminum Alloy 7075;Sessler,1967
5. Aluminum: Properties and Physical Metallurgy;Hatch,1984
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献