Author:
Choi Sang Hoon,Sim Jae Jin,Lim Jae Hong,Kim Dong-Wook,Hyun Soong-Keun,Park Kyoung-Tae
Abstract
Commercial production of titanium involves chlorination using chlorine gas that can be converted to hydrochloric acid by atmospheric moisture and is hazardous to human health. In the titanium production process, self-propagating high-temperature synthesis is one of the process to directly reduce titanium dioxide. In this work, titanium powder was prepared by self-propagating high-temperature synthesis using titanium dioxide as the starting material and magnesium powder as a reducing agent. After the reaction, magnesium and magnesium oxide by-products were then removed by acid leaching under different leaching conditions, leaving behind pure Ti. During each leaching condition, the temperature of the leaching solution was carefully monitored. After leaching, the recovered titanium in the form of a powder was collected, washed with water and dried in a vacuum oven. Detailed compositional, structural, and morphological analyses were performed to determine the presence of residual reaction by-products. It was found that leaching in 0.4 M hydrochloric acid followed by second leaching in 7.5 M hydrochloric acid is the optimum leaching condition. Furthermore, it was also noticed that total volume of solution in 0.4 M hydrochloric acid leaching condition is advantageous to maintain uniform temperature during the process.
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献