Comparative Investigation on the Ablation of Uncoated and Coated Mild Steel Inflicted by the 2 ms 2 kA Rectangular Current

Author:

Dai MingqiuORCID,Liu Yakun,Fu Zhengcai,Liu Juan,Bi Xiaolei

Abstract

The micro ablation characteristics of steel inflicted by the lightning currents and the influence of anti-corrosion coating on these characteristics are seldom investigated, even though fundamental to applications of steel. In this work, ablation tests on uncoated and coated mild steel plates were conducted with the 2 ms rectangular current simulating the component B of lightning currents. The macro-morphology, microstructure, and Vickers hardness of ablation zones were investigated systematically. The ablation characteristics and mechanisms of coated and uncoated steel were analyzed comparatively. It was found that the energy density of the 2 kA 2 ms rectangular current arc exceeded 106 W/cm2 causing the steel near the arc root melted within 2 ms and ablation formed. The width-depth-ratio of the ablated zone was 43.7 for uncoated plate, and only 7.5 for coated plate, since coating constricted the splashing effect of steel melt occurring on uncoated plate and confined the arc root. The metallographic microstructure and EBSD results showed the ablated zones of uncoated and coated steel both consisted of quenched martensite mixed with a handful of ferrite. There were fined equiaxed grains both in the fusion zone (FZ) and heat affected zone (HAZ) of uncoated plates whereas coarser columnar grains and fined equiaxed grains in the FZ and HAZ of coated plates, respectively. In the HAZ of uncoated plate, the average Vickers hardness of steel increased by 113%, while, in the HAZ and FZ of the coated plate, it increased by 209% and 136%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3