Influence of Strain Rate and Waveshape on Environmentally-Assisted Cracking during Low-Cycle Fatigue of a 304L Austenitic Stainless Steel in a PWR Water Environment

Author:

Poulain Thibault,de Baglion Laurent,Mendez Jose,Hénaff Gilbert

Abstract

In this paper, the low cycle fatigue resistance of a 304L austenitic stainless steel in a simulated pressurized water reactor (PWR) primary water environment has been investigated by paying a special attention to the interplay between environmentally-assisted cracking mechanisms, strain rate, and loading waveshape. More precisely, one of the prime interests of this research work is related to the consideration of complex waveshape signals that are more representative of solicitations encountered by real components. A detailed analysis of stress-strain relation, surface damage, and crack growth provides a preliminary ranking of the severity of complex, variable strain rate signals with respect to triangular, constant strain-rate signals associated with environmental effects in air or in PWR water. Furthermore, as the fatigue lives in PWR water environment are mainly controlled by crack propagation, the crack growth rates derived from striation spacing measurement and estimated from interrupted tests have been carefully examined and analyzed using the strain intensity factor range ΔKε. It is confirmed that the most severe signal with regards to fatigue life also induces the highest crack growth enhancement. Additionally two characteristic parameters, namely a threshold strain εth* and a time T*, corresponding to the duration of the effective exposure of the open cracks to PWR environment have been introduced. It is shown that the T* parameter properly accounts for the differences in environmentally-assisted growth rates as a function of waveshape.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference27 articles.

1. Fatigue behavior of stainless steel under conditions of changing strain rate in PWR primary water;Tsutsumi,2001

2. Factors influencing the rate of growth of fatigue cracks in RPV steels exposed to a simulated PWR primary water environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3